
www.manaraa.com

Data Management Requirements for a Knowledge

Discovery Platform

Liming Zhu, Len Bass, Xiwei Xu

NICTA, Australia Technology Park, Eveleigh, Australia

School of Computer Science and Engineering, University of New South Wales, Australia

Firstname.Lastname@nicta.com.au

Abstract— This paper provides some requirements for the data

management portion of a knowledge discovery ecosystem

platform. The requirements are functional – what the platform

should provide for its clients; quality – how the platform

should support modifiability, performance, and availability;

and management – how the platform supports operational

control to sites that use it. It also provides design guidance that

reflects the lack of central management that exists in an

ecosystem.

Keywords- data management, platform, knowledge discovery,

software ecosystem, architecture

I. INTRODUCTION

“The purpose of computing is insight, not numbers.” This
statement is even truer today in the era of “big data” than it
was in 1971 when Richard Hamming coined this phrase. In
today’s environment, massive amounts of data are available
from a wide variety of sources, in a wide variety of forms,
and with a wide variety of provenances. Analysis and
visualization tools are equally variable. The tools used and
the individuals involved in the generation of insight from
data form an ecosystem or multisided market [1]. Platforms
to support the ecosystem of knowledge discovery are certain
to emerge, at least for particular vertical industries or
domains where some commonality and controlled variation
exists.

There are three portions to a platform to support
knowledge discovery: data management, data analysis, and
data visualization. Designing any of these portions involves
significant difficulty. We are initially focusing on the portion
of the knowledge discovery platform that manages the data.

The question now becomes “what are the requirements
that such a data management platform should satisfy?” That
is the subject of this paper. We present data management
requirements and design principles derived from our
experience in building or designing platforms for several
different domains to support knowledge discovery. While we
acknowledge that our requirements and design principles are
almost certainly incomplete, they do provide a starting point
for the development of a platform for data management in
support of knowledge discovery.

II. SOURCES

In this section, we describe two experiences with either
constructing or designing platforms for the processing of
data. The first is for the Australian mortgage lending industry
and the second for the integration of data about a particular

domain from the different states in Australia into a form
uniformly accessible. We also describe what it means to be
an ecosystem involving a knowledge discovery platform.

A. The Australian Mortgage Industry

Vertical industries (such as mortgage lending) have been
developing e-business standards to improve their business-
to-business data management. LIXI (Lending Industry XML
Initiative) [2] is an Australian e-business standardization
body that serves the consumer loan industry. LIXI e-business
standards cover a wide range of business data management
and exchange scenarios. Some exchanges are transactional,
such as loan application processing. Others are non-
transactional such as loan product information dissemination
where lenders (e.g., banks) communicate new and updated
loan product information to brokers, mortgage house and
borrowers. The latter usually requires the unidirectional
secure dissemination of large quantities of frequently
changed and time-sensitive data from lenders to
brokers/borrowers. The lenders own the data and its
management. Intermediaries may add value to it by
aggregating data from different lenders and performing
value-adding analysis and manipulation before republishing
in the ecosystem. A wide range of data receiver capabilities
has to be considered, in terms of technical sophistication on
the organization level, device limitations (e.g. mobile devices
for field operators) and basic data management requirements
(e.g. sorting, filtering, annotation, refreshing). Costly
infrastructure is often not the best solution.

We designed and built (in the form of reference
implementations) a data management platform that
disseminate the data using ATOM Publishing Protocol (APP)
[3]. We used a customized commercial data-schema mapping
tool to map lender-specific product schema and other
provenance information to LIXI schemas and elements of the
APP. We built a tool to then automatically generate product
information feed in LIXI and APP compliant fashion. We
also built mobile-based and Excel-based LIXI/APP feed
consumption components to support the less-IT-sophisticated
data consumer in the ecosystem.

B. Integrating Data from Different States

Each state in Australia performs data collection and
analyses of particular household information (e.g. transport
survey or property transactions). As might be expected, each
state collects this information in its own fashion, uses its own
schema to define the data, and maintains ownership and
governance over its data. Some aspects of a schema are even

www.manaraa.com

bound to state laws and cannot be simply harmonized
through a nation-wide standard schema.

The goal of the platform we are designing is to allow
access to an integrated version of the data collected by all of
the states. We are doing this by harmonizing the data to
generate a schema for user access to the data and then
converting requests for data, and potentially analysis, into a
form appropriate for the sources of the data. We expect this
will also involve tools that are able to decompose certain
analysis and generate analysis results incrementally so that
an analysis can be partially done on certain state data sets.
The provenance of the data is also important. Some data
might be derived; other data might be raw. Data might
change as a result of the correction of errors and analyses
that were performed with erroneous data may need to be
repeated.

C. Ecosystems

Software ecosystem is a new conceptualization of large-
scale software development. A Software Ecosystem consists
of the set of software solutions that enable, support and
automate the activities and transactions by the actors in the
associated social or business ecosystem and the organizations
that provide these solutions [4]. An ecosystem adds some
unique challenges [5]:

 Decentralization: Data, development, evolution and

operational control are all decentralized. For example,

LIXI is a non-profit organization with no standard

enforcement power. Its membership is voluntary.

 Inherently conflicting requirements: Most parties want

complexity to reside in others’ parts of the overall system

and want information to be shared, but do not want to

share their own information. Technical solution

companies provide and favour intermediary gateways and

custom-built applications, while smaller players typically

want commoditized applications and no intermediaries.

 Continuous evolution with heterogeneous elements:

The whole ecosystem cannot be stopped and re-

engineered. Day-to-day data management activities have

to go on, and horizontal interactions with the larger

systems also exert constant influence.

 No clear people/system boundary: The scale of the

involved organisations varies widely. Some companies

have sophisticated systems that can automate most tasks,

while others still rely on fax and manual processing.

In an ecosystem based on a knowledge discovery

platform, data may be available through a set of external
value-added-resellers, and a community of users building
and sharing customizations [6]. Every component in such an
ecosystem has its own reason for existence and its own
management. This means there is no possibility of overall
direction. For example, the use of APP as a Web-friendly
API for publishing loan product information essentially
opens up the competitive value-adding aggregator market
where aggregators consume through APP, perform analysis
and add value, and republishes in APP often transparently.
Another example is the publishing of mappings between

schemas in the state data integration example to effectively
allow more innovative and smart applications combing two
different data sources in the ecosystem.

III. MOTIVATING USE CASES

In this section we present some of the motivating use
cases that led to our set of requirements. The use cases
represent situations that are to be expected when utilizing a
platform for the data management portion of knowledge
discovery. Clearly, this list is incomplete but it is indicative
of the types of situations that might arise.

U1. A data analyst wishes to combine unformatted,
tabular, and graph based data in order to perform an analysis.
One set of data comes from a survey of households, another
set represents the search queries emanating from that same
set of households, and a third set consists of the social
networks of the members of that set of households.
Furthermore, the form of the tabular data has changed from
one year to the next.

U2. One of the services provided in the infrastructure is
updated. Those responsible for services that depend on the
updated service should be notified with information about
what has changed.

U3. One of the services provided in the platform fails.
The service falls back to a degraded service mode. The data
produced by this service is annotated to indicate it was
produced by a service operating in degraded mode.

U4. The OCR that scanned the data from a survey is
found to have an error that results in misreading the survey
answers. Consumers of the data are informed, in case their
analyses are affected.

U5. One company located in the United States and
another located in Germany establish a joint venture to
develop a new product in the insurance space including
health information for the insurers. The product must adhere
to relevant data privacy laws for health data.

IV. REQUIREMENTS

We use our list of use cases to motivate more specific
requirements for a platform. As with the use cases, we do not
expect these requirements are exhaustive but they are
indicative. We omit some obvious requirements such as
authentication and authorization. We divide our requirements
into those that apply to the platform’s services or qualities
those that apply to the design of the platform.

A. Services and qualities of the platform

R1. Allow clients to read/write data according to client
specified formats. Data for knowledge discovery exists in a
wide variety of structured, semi-structured, or unstructured
forms. Tabular data, graph-oriented data, document centric
data, textual data are all popular forms of data storage. The
platform should have the ability to serve data to a client
according to the client’s preferences. This requirement
suggests the need for a wide variety of converters both
syntactic and semantic.

www.manaraa.com

R2. Allow clients to dynamically add or delete data
sources. Discovery of data sources is not a service we
anticipate to be within the data management platform since
discovery may involve contractual obligations but once a
data source has been discovered and access has been
negotiated, clients should have the ability to dynamically
access the source without the necessity for re-configuration.

R3. Data shall be accompanied by meta-data that
includes the history, validity, or uncertainty of the data. This
requirement suggests the need to be able to identify and,
possibly furnish, missing data or inferred data. It also
suggests the need to track usage of the data since the clients
of data that is modified subsequent to the usage may need to
be alerted to the fact that the data used in their analyses has
changed.

R4. The platform shall support collaboration among
different analysts over the data. This collaboration will be
either synchronous or asynchronous. This suggests that
consistency is important for data being accessed by multiple
clients.

R5. Clients shall be able to access the data according to a
variety of different patterns. The client can subscribe to data
that is being created, the data can be moved to the client, or
analysis can be moved to the data. In addition, Data shall be
available for batch as well as interactive analysis.

R6. All tools should be accessible from a wide variety of
hardware and operating systems. Heterogeneity is a given in
today’s computing environments. Data can be stored,
analyzed, or visualized on hardware platforms ranging from
supercomputers to servers to desktops to mobile devices.
Although some tools may be restricted to specific platforms,
supporting access to these tools through a web frontend or a
virtualized environment is necessary.

R7. The platform shall be able to accommodate change in
data management tools. The methods for data management
are continually evolving and domain specific. New tools are
continually arriving.

R8. The platform shall support the volume of data
available from data sources. Data sources may be on the
order of peta-bytes. The platform should provide tools to
manage this amount of data in a cost effective fashion. For
example, efficient data query API, streaming or moving the
analysis to the data rather than moving the data to the
analysis are possible techniques to support large data
volumes.

R9. The platform shall be aware of the dependencies
among the clients and the services within the ecosystem.
When one service is dependent on another; the platform
should provide that information and inform system
administrators when a service anywhere in the dependency
chain is modified.

R10. A failure in one service shall not affect the
availability of a client. Failure of instances in modern
computing environments should be expected. Each service
should detect and take corrective action when a failure

occurs. Furthermore, each service should provide a real time
window into its current availability [7]

R11. The platform shall be aware of relevant
privacy/location regulations and raise alerts if a violation of a
regulation occurs. It may not be feasible to move data to
remote analysis sites either due to privacy/security concerns.

B. Design requirements

In an ecosystem, there is no central control. Data
consumers and providers have to cooperate. We observe the
following requirements for design drawn from the LIXI
experience [8].

D1. Use principles and rules to influence design rather
than prescribe structures. An architectural rule may be
satisfied by several potential structural architectures.

D2. Influence but do not control others. Decentralization
is one of the main characteristics of an ecosystem.
Additionally, many ecosystems are collaborative rather than
hierarchical. In such settings, influence instead of control is
the main mechanism to achieve data management
interoperability and improve overall system quality. This set
of rules encourages the use of influence through micro-
format proposals and optional design alternatives.

D3. Use Minimal service interface between data
consumers and data providers. Ecosystems should use
message-centric (rather than operation-centric) interfaces in
data sharing. That is, service interfaces should not expose
abstractions in the form of remote procedures. Essentially,
we advocate the use of a single operation on a service but
allow more complicated interfaces to exist. This rule
encourages maximum flexibility in the face of constant
evolution. Ever-changing shared contexts are carried within
messages.

D4. Share Metadata and Context. Metadata is usually
described in data sharing contract. Contexts are more
instance-specific. We encourage metadata and contexts to be
shared in all possible ways. Such metadata can be related to
policies (e.g. security requirements or encryption
capabilities), quality of service characteristics (e.g. required
response time), and semantic descriptions. Through the
sharing of metadata and context, interoperability can be
achieved at both design time and run-time with little top-
down prescriptive planning.

D5. Avoid Explicit Intermediaries. Do not introduce the
role of an intermediary explicitly in ecosystem data
management platform reference architecture. However,
allow such intermediaries to organically appear in the overall
ecosystem. This is very different from existing e-business
me-ta-standards such as ebXML [9], which have an explicit
concept of central registry and repositories through which
companies post business processes, capability profiles and
collaboration protocol agreements. Technically, this is
appealing and simplifies some business scenarios. However,
it may be very difficult to introduce such a structure within
an ecosystem because of complex business issues such as
who the intermediaries should be, legal issues such as

www.manaraa.com

confidentiality concerns, and practical issues such as the
difficulty of semi-automated agreement negotiation.

V. TYPES OF TOOLS ENVISIONED

In this section, we enumerate some of the types of tools
that we envision being a portion of the platform.

T1. Basic data management tools for large data such as
those found in Hadoop [10].

T2. Data mapping and model transformation tools for
data formats or data schemas such as [11], [12], [13] and
[14]. A vocabulary management tool [12] will allow
semantic mapping between different state schemas or
between state schemas and the harmonized schema without
forcing a conversion. Such mapping could be published and
used for various purposes in both data management and
analysis.

T3. Collaboration tools such as those presented in [15].

VI. MISSING REQUIREMENTS

We have enumerated a set of requirements and design
principles taken from our experience and the literature. This
list is almost certainly not complete. The important question
is not so much “what requirements are missing?” as “how do
we find the missing requirements?” Normal requirements
elicitation involves collecting requirements from
stakeholders including the developers. The stakeholders in an
ecosystem are not known a priori. Finding the correct
process for determining requirements for an ecosystem is one
of the open questions with which we are concerned.

VII. ACKNOWLEDGMENT

National ICT Australia is funded by the Australian
Government’s Department of Communications, Information
Technology, and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT
Research Centre of Excellence programs.

REFERENCES

[1] D. S. Evans, A. Hagiu, and R. Schmalensee, Invisible Engines: How

Software Platforms Drive Innovation and Transform Industries, 1st
ed.: The MIT Press, 2006.

[2] LIXI. Lending Industry XML Initiative. Available:

http://www.lixi.org.au
[3] L. Zhu and B. Thomas, "LIXI Visible Loans: Reference Architecture

and Implementation Guide," Lending Industry XML Initiative

(LIXI)2007.
[4] J. Bosch, "From software product lines to software ecosystems,"

presented at the Proceedings of the 13th International Software

Product Line Conference, San Francisco, California, 2009.
[5] L. Northrop, R. Kazman, M. Klein, D. Schmidt, K. Wallnau, and K.

Sullivan, Ultra-Large Scale Systems: The Software Challenge of the

Future. Pittsburgh: SEI, 2006.
[6] S. Jansen, A. Finkelstein, and S. Brinkkemper, "A sense of

community: A research agenda for software ecosystems," in Software

Engineering - Companion Volume, 2009. ICSE-Companion 2009.
31st International Conference on, 2009, pp. 187-190.

[7] B. Christensen. (2012). Fault Tolerance in a High Volume,

Distributed System. Available: http://techblog.netflix.com/.
[8] L. Zhu, M. Staples, and V. Tosic, "On Creating Industry-Wide

Reference Architectures," in The 12th IEEE International EDOC

Conference (EDOC'08), Munich, Germany, 2008.
[9] ebXML. (2012). Electronic Business using eXtensible Markup

Language (ebXML). Available: http://www.ebxml.org/.
[10] Apache. (2012). Hadoop. Available: http://hadoop.apache.org/.

[11] . Stylus Studio X12. Available: http://www.stylusstudio.com/.

[12] NICTA. (2012). Vocabulary Manager (VM). Available:
http://vocab.ext.nicta.com.au/vocab/.

[13] I. Gorton, C. Sivaramakrishnan, G. Black, S. White, S. Purohit, M.

Madison, and K. Schuchardt, "Velo: riding the knowledge
management wave for simulation and modeling," in 4th international

workshop on Software engineering for computational science and

engineering (SECSE '11), 2011.
[14] J. C. Grundy, J. G. Hosking, R. W. Amor, W. B. Mugridge, and Y. Li,

"Domain-specific visual languages for specifying and generating data

mapping system," Journal of Visual Languages and Computing, vol.
15, pp. 243–263, 2004.

[15] Wikipedia. (2012). Collaborative Software. Available:

http://en.wikipedia.org/wiki/Collaborative_software.

National ICT Australia is funded by the Australian Government’s

Department of Communications, Information Technology, and the Arts and

the Australian Research Council through Backing Australia’s Ability and

the ICT Research Centre of Excellence programs.

http://www.lixi.org.au/
http://techblog.netflix.com/
http://www.ebxml.org/
http://hadoop.apache.org/
http://www.stylusstudio.com/
http://vocab.ext.nicta.com.au/vocab/
http://en.wikipedia.org/wiki/Collaborative_software

